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Abstract. Ising spin-glass systems with long-range interactions (J (r) ∼ r−σ ) are considered. A
numerical study of the critical behaviour is presented in the non-mean-field region together with
an analysis of the probability distribution of the overlaps and of the ultrametric structure of the
space of the equilibrium configurations in the frozen phase. Also, in the presence of diverging
thermodynamical fluctuations at the critical point the behaviour of the model is shown to be of
the replica symmetry breaking type and there are hints of a non-trivial ultrametric structure. The
parallel tempering algorithm has been used to simulate the dynamical approach to equilibrium of
such systems.

1. The long-range spin-glass model

The greatest incentive to study spin-glasses with long-range interactions is that they are
conceptually halfway between the Sherrington–Kirkpatrick model, exactly solvable in mean-
field theory, and the more realistic short-range models, with nearest-neighbour interactions.
Long-range spin-glass models are particularly interesting because in one dimension they
already show a phase transition between the paramagnetic and the spin-glass phase. So it is
possible to study this transition, also out of the range of validity of mean-field approximation,
in a relatively easy way in comparison with theories with short-range interactions below
upper critical dimension. Furthermore, these one-dimensional models serve as a clarifying,
qualitative, analogy for short-range models in higher dimensions.

The Hamiltonian of these kind of systems is

H = −
∑
i<k

Jiksisk (1)

wherei = 1, . . . , N , the size of the system, thesi are Ising spin variables and theJik are
quenched, Gaussian random variables. They have mean zero and variance:

J 2
ik =

C(σ)2

|i − k|2σ (2)

whereC(σ) is a normalizing factor, such that
∑

ik J
2
ik = N ; periodic boundary conditions

have been used (i.e.i − k = N − i + k for i − k > N
2 ).

Already in one dimension, the long-range systems show different behaviours varying the
value ofσ . First of all, to allow thermodynamical convergence we must haveσ > 1

2 [1].
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For 1
2 < σ 6 2

3 a continuous phase transition is present, describable in the mean-field theory
approximation; the limitσmf = 2

3 is found in the renormalization approach from the dimension
of the coupling constant. Using the replica trick, in fact, we are able to get the Landau–Ginzburg
effective Hamiltonian corresponding to the Hamiltonian (1). Ind dimensions it is:

H = Ld

4

∫
ddq

(2π)d
(q2σ−d +m2

0)
∑
a 6=b
|Q̃ab(q)|2 +

g0

3!

∫
ddx

∑
a 6=b 6=c

Qab(x)Qbc(x)Qca(x) (3)

wherea, b andc are the replica’s indices and the dimension of the coupling constant is, then,

dg = 3σ − 2 (4)

for d = 1. So the coupling constant is irrelevant forσ < 2
3 (or marginal forσ = 2

3). When
2
3 < σ < 1 the phase transition is supposed to still be present but we are in an infrared
divergent regime causing mean-field theory to lose consistency at the critical temperature: it is
then necessary to renormalize in order to find the correct critical indices. In the caseσ = 1 it
is not yet clear what kind of transition there is. Kotliaret al [2] supposed a behaviour similar to
the analogous case of the long-range ordered magnetic systems with interactions decaying like
1/r2, in which Andersonet al [3] and then, in a version for general discrete models, Cardy [4],
had found a Kosterlitz–Thouless-like phase transition [5]. Until now, nothing rigorous had
been proved for this value ofσ . Finally, forσ > 1, there is only one Gibbs thermodynamical
state at all temperatures, as rigorously proved in [6].

There is, actually, an analogy with the critical behaviour of short-range systems. Starting
from the lowest allowed value of the exponent driving the intensity of the bonds and increasing
it, we can observe a behaviour qualitatively similar to those of short-range models in different
dimensions: from mean-field (d > 6) to infrared divergent regime and up to the case of the
absence of a phase transition.

Our contribution has been to determine the critical temperatures and the critical indices
in the regime of diverging fluctuations at the critical point for different long-range systems
(different values ofσ ). Besides, we have examined the features of the space of the equilibrium
configurations for finite-volume systems, getting various hints about the existence of a replica
symmetry breaking (RSB) scenery also in the region of infrared divergences. Furthermore,
through the evolution in time of three independent replicas, we have obtained elements in favour
of the existence of an ultrametric structure of the equilibrium states; therefore sustaining the
idea that this kind of phase space belongs intrinsically to spin-glasses, and that it does not
depend on mean-field theory formulation, in which framework it was initially derived.

We have performed numerical simulations of these systems with different power-law
behaviours, i.e. changing the value of the exponentσ . We tookσ = 0.69 andσ = 0.75, both
beyondσmf . They are the same values chosen by Bhatt and Young in [7] so as to compare the
common results. Every system has been simulated in different sizes to utilize the finite-size
scaling (FSS) techniques: five sizes between 32 and 512 spin have been investigated for every
value ofσ . In this way we obtained the critical indices and compared their values with the
theoretical values obtained from one-loop expansion inε = σ − σmf [2]. Moreover, in every
numerical run we have looked at the parallel evolution of three independent replicas (observed
in the same bond configuration). In this way it has been possible to study observables built from
three different overlaps, that are useful to probe the ultrametric structure of the equilibrium
configurations of a spin-glass, also out of the mean-field range of validity.

To simulate the dynamical approach to equilibrium we have used the parallel tempering
algorithm [8]. The evolution of every system has been simulated in a number of different
random quenched samples varying between 200 (forN = 512) and 600 (N = 32), for 65 536
Monte Carlo (MC) steps each. The thermalization times, in MC steps, were all at least 30
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times smaller than this value. In order to find the thermalization we, first of all, checked
that the time that each configuration simulated in the parallel tempering spends in every heat
bath is independent of the temperature of the bath. We also checked that the probability of
exchanging two configurations between two different baths is almost the same for every couple
of temperatures and it is always greater than 0.3 for the set of temperatures chosen to perform
the parallel tempering simulation. Finally, the most important check on thermalization has been
to look at the absence of drifting of the observables (the kurtosis of the overlap distribution
and the spin-glass susceptibility) on the logarithmic timescale, after they reached their plateau
values.

2. Critical behaviour

To determine the critical temperature we have used the FSS property of the observable:

g = 1

2

(
3− 〈q4〉

(〈q2〉)2

)
(5)

called theBinder parameter. Here〈 〉 stands for the mean over the thermodynamicalensemble,
while the overline represents the mean over the random distribution of the bonds. The overlap
q is defined, for our numerical goal, as

q =
∑
i

s
(1)
i s

(2)
i (6)

where the upper index is the real replica’s one.
The FSS form of the Binder parameter is:

g = g(N 1
ν (T − Tc)) (7)

whereN is the size of the system. Since atT = Tc, for every size, isg = g(0), the critical
temperature can be deduced from different sizesg(T ) intersections. To compute it, we have
used the scaling behaviour of the ‘critical’ temperature for a finite-size system:

Tc(N)− T∞c = B N−θ (8)

where theTc(N) is the abscissa of the intersection point between theg(T ) for the sizeN/2 and
theg(T ) for the sizeN andθ = 1/ν [9]. Thus, fitting the curves ofTc(N) for both long-range
systems (σ = 0.69 andσ = 0.75) with a power-law function, we have been able to extrapolate
the following values for the critical temperature in the thermodynamical limit (T∞c in (8)). We
have (see figure 1):

Tc = 0.75± 0.1 for σ = 0.69 (9)

Tc = 0.63± 0.08 for σ = 0.75. (10)

The first result is consistent with the two estimates of [7] forσ = 0.69: Tc ∼ 0.73 and
Tc ∼ 0.78. However, they could not localize the transition temperature forσ = 0.75. Instead,
we have found that there is clearly a second-order phase transition also atσ = 0.75, well
besides the region of validity of the mean-field theory. In analogy with short-range models,
we observe that the behaviour of the Binder parameter is qualitatively similar to that of four-
dimensional short-range spin-glasses, far below the upper critical dimension and over the lower
critical dimension (LCD) [10–12].

From theg’s FSS properties we have also determined the critical indexν [14]. We have
not used the value of the parameterθ = 1

ν
computed from the fit (8) because of its very large
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Figure 1. The Binder parameterg versus temperature for different sizes for the model with
σ = 0.69 (left) and the model withσ = 0.75 (right). In the first case the 32–512 sizes are plotted,
in the second case only the 64, 128, 256 and 512 are represented.

uncertainty. Instead, to estimate it, we have first calculated the derivative ofg with respect to
T at a given valueg0. In fact, from (7) follows:

dg

dT

∣∣∣∣
T0:g(T0)=g0

' AL 1
ν . (11)

We have computed the values of the derivative for the values ofg corresponding to the
confidence interval of the critical temperature. In this interval ofg-values we have fitted the
g(T ) curves, in every size, with polynomials of various order (by the fact of second or third
order), each time looking for the polynomial of the lowest possible order giving a fit satisfying
theχ2 test.

For everyg0 value we have got different values of thedg
dT |T0:g(T0)=g0 for different sizes.

Then for everyg0 we determine aν(g0). The mean value of these gives the correct exponent
ν.

For our two models we have found:

ν = 3.8± 0.4 for σ = 0.69 (12)

ν = 4.5± 0.2 for σ = 0.75. (13)

The first result is consistent with [7], which gaveν = 4.0± 0.8, and also with the one-loop
expansion result [2]:ν1l = 3 + 36ε = 3.84 (here isε = σ − 2

3 = 0.69− 2
3). Forσ = 0.75,

instead, we are really too far fromσmf for the one-loop expansion to give a good approximation
(ν1l = 6).

To find the critical indexη which gives the anomalous dimension of the two-point
correlation function at the critical temperature, we have used the FSS properties of the
observableχsg, the so-called spin-glass susceptibility, defined as

χsg = 1

N

∑
ik

(〈sisk〉)2 = N〈q2〉 (14)

whose scaling behaviour is

χsg = N2−ηχ(N
1
ν (T − Tc)). (15)



Critical behaviour and ultrametricity 1421

We have:

η = 1.62± 0.08 for σ = 0.69 (16)

η = 1.4± 0.1 for σ = 0.75. (17)

The theoretical value ofη in a long-range system, or, more exactly, its dependence onσ , such
as that described by the Hamiltonian (3), does not vary from the mean-field value going in
a region of diverging thermodynamical fluctuations, because the two-point vertex function
(0(2)) does not have any infrared divergence at the critical point. The behaviour of the vertex
function of the twofieldsQab andQcd , as derived from the Hamiltonian (1), is:

0ab,cd(k) =
[
k2σ−d − g2

0(n− 2)
∫

ddp

(2π)d
1

p2σ−d(p − k)2σ−d
]
Fabcd

≡ [k2σ−d − g2
0(n− 2)Iσ (k)]F

abcd

≡ 0(2)(k)F abcd (18)

where, in our case,d = 1, n is the number of the replicas and the tensorFabcd is defined like
in [13]:

Fabcd = 1
2(δ

acδbd + δadδbc − T abcd) (19)

and

T abcd =
{

1 if a = b = c = d
0 otherwise.

(20)

The integral can be easily computed:

Iσ (k) ≡
∫

ddp

(2π)d
1

p2σ−d
1

(p − k)2σ−d

= (k2)
3d
2 −2σ

(4π)
d
2

0(2σ − 3
2d)

0(2d − 2σ)

[
0(d − σ)
0(σ − d

2)

]2

. (21)

Expressing the perturbative expansion in the variableε = σ − 2
3d we observe that the function

Iσ (K) has no pole inε. Thus, the termk2σ−d in 0(2)(k) of the free theory needs no correction
from any perturbative contribution and the anomalous dimensionη of the two-points correlation
function does not depend on the order of the perturbation expansion.

Therefore, it always has the same dependence on the exponentσ : at any order is
η = d + 2− 2σ = 3− 2σ . So the theoretical values are:

ηt = 1.62 for σ = 0.69 (22)

ηt = 1.5 for σ = 0.75 (23)

and our results are in total agreement with them. Using the so obtained values of the critical
indices we can plot the scaling behaviour ofg and ofχsg as shown in figure 2.

3. P (q) analysis and ultrametricity

The overlap probability distributionP(q) is one of the most powerful means at our disposal to
obtain information about the pure states structure of a spin-glass in its low-temperature phase.
TheP(q), in the standard replica approach, is connected to the structure of thefinite-volume
equilibrium states. This point of view has sometimes been criticized, e.g. by Newman and
Stein [15], but some of the objections raised by them have been overcome by showing that the
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Figure 2. The scaling property of the Binder parameter (left) and of the spin-glass susceptibility

(right). g(T ) andχsgN−2+η versusN
1
ν (T − Tc) are plotted for all the sizes of the system with

σ = 0.75 (Tc = 0.63,ν = 4.5, η = 1.4,N = 64, 128, 256, 512).

behaviour of the probability distribution functions built fromwindowoverlaps† is identical to
that of the functionsP(q) defined in the usual way [16].

In this paper we present the data of the numerical simulations using the standard replica
approach. However, the data themselves do not depend on the definition of pure state: they
are some kind of ‘experimental’ facts that must be explained by the theory.

An analysis of the behaviour ofP(q) allow us to discern between the RSB frame and the
trivial one, in which only two different pure states are allowed.

Observing the behaviours of the probability distributions shown in figure 3, we realize
that we are studying models, whose low-temperature phase is described by many equilibrium
states, including those states which are completely different and that correspond to the region
aroundq ' 0. The peak becomes higher asN grows, while the area under thePN(q), between
q = 0 and the value ofq corresponding to the peak of the distribution, tends to remain constant.
FurthermoreP(|q| = 0) does not decrease, increasing the size of the system, but settles down
to a non-zero value. This is the same picture we have in the mean-field case, if we are now
also considering systems which cannot be treated in the mean-field approximation. The fact
that these distributions do not end with aδ function like the theoretical one in RSB theory, but
are non-zero in the whole interval [0, 1], is an expected effect of the finite size of the simulated
systems.

The most relevant and particular property of the phase space at finite volume that seems to
emerge from our analysis is the ultrametricity, the special hierarchical structure of spin-glasses
equilibrium configurations. We can gather hints of the existence of this property using some

† The overlap over a window of linear sizeB is defined as

qB = 1

Bd

d∑
i=1

B−1∑
xi

s(1)({xi})s(2)({xi}) (24)

whered is the dimension of the lattice,xi are the coordinates on the lattice andB is smaller thanL, the linear size of
the lattice.
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Figure 3. P(q) atT = 0.5 for the long-range models withσ = 0.69 (left) andσ = 0.75 (right).
The sizes plotted areN = 32, 64, 128, 256, 512. Increasing the size the distribution flattens toward
a value of about one, in the region|q| ' 0, and the peak becomes increasingly sharp.

Figure 4. B ′q−q (T ) for the two long-range systems:σ = 0.69 (left), for sizesN = 32, 64, 128,
256, 512, andσ = 0.75 (right), for sizesN = 64, 128, 256, 512.

cumulants built from the overlapsq12, q13 andq23 of three different, independent replicas.
With this aim we have observed the behaviour of the two cumulants

Bq−q ≡ 〈(|q| − |q
′|)2〉

〈q2
M〉

(25)

and

B ′q−q ≡
〈(q − q ′sign(qM))2〉

〈q2
M〉

(26)
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Figure 5. Bq−q versus temperature for theσ = 0.69 model (left) and theσ = 0.75 model (right).
The sizes are the same as figure 4.

whereqM is the value of the overlap which has the maximum absolute value between the
three,q andq ′ are the values of the other two overlaps (q, q ′ < qM ). The measures are made
in every quenched configuration, at every temporal uncorrelated interval, once the simulated
system has reached equilibrium. Like the Binder parameterg, these observables also have a
FSS behaviour not depending on the indexη. Their FSS form is, in fact,

B#
q−q = f (N

1
ν (T − Tc)). (27)

Analysing their behaviours in the proper way we can get different checks of the existence of
a complicated space of states organized in an ultrametric structure.

If an ultrametric structure exists the cumulantsBq−q andB ′q−q should tend to zero under
Tc in the thermodynamical limit. The two minor overlaps, in fact, should become equal and
their difference should tend to zero. This is, really, the behaviour that we noticed and that is
plotted in figures 4 and 5: theBq−q andB ′q−q of a given system tend to zero with decreasing
temperature and they do it faster the bigger the size of the system.

At fixed temperature below the critical one,T = 0.5, we have fittedBq−q(N) with the
power-law behaviourA N−ζ . In both the long-range models considered,Bq−q , atT = 0.5,
appear to decrease to zero with this law. The exponents areζ = 0.091± 0.009, forσ = 0.69,
andζ = 0.09± 0.01 forσ = 0.75. Because of these small values ofζ , we would need data
about systems of greater size to guarantee thatBq−q tends to zero below the critical point.
Nevertheless, the power-law decaying of theBq−q towards zero is consistent with our data.

Following the behaviour from the high-temperature phase the curves cross each other in
the critical region (we know it from the FSS behaviour) and then tend to zero forT → 0.
Actually, from this crossing we can have another guess at the critical temperature, just like
from the Binder parameterg (see figure 6).

In this case, however, there is no fit of the FSS behaviour (8) satisfying theχ2 test. Thus,
we simply give the average of the last points of intersection between theBq−q(T ) curves. The
values found are:

Tc = 0.65± 0.08 for σ = 0.69

Tc = 0.60± 0.06 for σ = 0.75.
(28)

Anyway, this estimate agrees, within the errors, with the previous one given in (10). The errors
appear to be smaller than in (10), but we underline that we could not manage to perform the
FSS fit, neglecting, in this way, the shift of theTc(N) towards theTc of the system in the
thermodynamical limit: the values above experience a systematic error.

As we can note from figures 4 and 5 the cumulantB ′q−q is always greater thenBq−q .
This is due to the fact thatq ′sign(qM) not always has the same sign ofq: there are triples
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Figure 6. Detail ofBq−q in the critical region for theσ = 0.69 (left) and theσ = 0.75 model
(right).

of spin configurations giving productsqq ′qM < 0, that is sign(q ′sign(qM)) 6= sign(q). This
implies that sometimes the(q − q ′sign(qM))2 contributions to the mean value are bigger
than the corresponding(|q| − |q ′|)2 terms inBq−q . The qualitative behaviour of temperature
dependence, however, is not influenced in a critical way from this difference andB ′q−q(T )
tends to zero whileT → 0 just likeBq−q(T ). Fitting, as before,B ′q−q at the fixed temperature

T = 0.5 with the power-lawA′N−ζ
′
, we observe a behaviour statistically consistent with the

decay to zero. The exponents are nowζ ′ = 0.12± 0.01 forσ = 0.69 andζ ′ = 0.13± 0.02
for σ = 0.75.

4. Conclusions

In summary, the insight we get about the one-dimensional long-range (J (r) ∼ 1
rσ

) spin-glasses
is that the critical behaviour satisfies the one-loop predictions forσ not too far fromσmf = 2

3,
but that the first-orderε-expansion already fails to describe it forσ = 0.75. In both systems
examined we have been able to determine a low-temperature phase, showing a non-trivial
hierarchical structure of the space of the finite-volume equilibrium configurations. We have
built the P(q) distribution, from which we can argue the validity of the RSB ansatz also
for σ > 2

3, out of mean-field theory, and we have analysed the ultrametric structure of the
equilibrium configurations with the cumulantsBq−q andB ′q−q .

To describe the behaviour of the one-dimensional long-range system with interactions
decaying like 1/r (σ = 1) a few analytical works have been made until now [2,17], based on
the replica symmetric ansatz. Our results, however, show the inconsistency of this Ansatz in
the explored region of parameters (i.e. untilσ = 0.75). The ansatz of replica symmetry
is, furthermore, also violated in a related model for diluted infinite-range systems [18].
Consequently, further investigation should be performed to understand the behaviour of such
power-law decaying systems forσ = 1.
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